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Machine learning has emerged as a powerful tool for analyzing complex data sets and making predictions in 
a wide range of applications, including catalysis. Bycombining statistical methods, algorithms, and 
computational power, machine learning can help identify patterns and relationships in catalytic systems that 
are difficult or impossible to discern using traditional approaches. This can lead to more efficient and effective 
catalyst design, optimization, and prediction of catalytic activity. Machine learning has already been 
successfully applied to various aspects of catalysis, including catalyst discovery, reaction mechanism 
identification, and kinetic modeling. The continued integration of machine learning with catalysis research 
holds great promise for advancing our understanding of catalytic systems and developing new and improved 
catalysts for important industrial processes. 
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1.   INTRODUCTION 

The background of catalytic materials can be traced back to ancient times 
when people started using catalytic materials in the production of pottery. 
However, the understanding of catalytic reactions did not begin to develop 
until the 18th century. At that time, it was discovered that some chemical 
reactions required high temperatures to occur, but under certain 
conditions, these reactions could occur at lower temperatures, which is the 
basic concept of catalytic reactions. Catalytic materials are substances that 
can promote chemical reactions, accelerate reaction rates, improve 
efficiency and yield, and reduce energy requirements and costs. Catalytic 
materials are widely used in fields such as chemistry, medicine, energy, 
and others, such as automotive emission control, chemical production, 
pharmaceuticals biotechnology, batteries, and fuel cells. Machine learning 
is a branch of artificial intelligence aimed at allowing computer systems to 
automatically learn and improve task performance without explicit 
programming (Mitchel, 2007; Zhou, 2021; Jordan and Mitchell, 2015). The 
history of machine learning dates back to the 195os and 196os, when 
computer scientists began using algorithms and statistical methods to 
enable computer systems to automatically learn patterns and rules from 
data (Mahesh, 2020; Carleo, 2020). However, the application of machine 
learning was severely limited by hardware and algorithm capabilities at 
that time. It wasn't until the 198os that machine learning began to gain 
wider usage with the development of computer hardware and algorithms. 
With the explosive growth of data, machine learning has become 
increasingly important in the 21st century. The development of big data, 
cloud computing, and deep learning technologies have enabled the 
implementation of more accurate and efficient algorithms and models for 
machine learning (El Waqa and Murphy, 2015). Machine learning is now 
widely applied in various fields such as natural language processing, image 
and video processing, speech recognition, medicine, finance, e-commerce, 
and intelligent transportation, among others (Aladdin, 2021). Machine 
learning is a branch of artificial intelligence that aims to improve task 
performance by allowing computer systems to learn and improve 

automatically without explicit programming. The history of machine 
learning can be traced back to the 1950s and 1960s, when computer 
scientists began experimenting with algorithms and statistical methods to 
enable computer systems to learn patterns and rules from data. However, 
the application of machine learning was limited by hardware and 
algorithm capabilities at that time (Bi, 2022). It wasn't until the 198os that 
machine learning began to gain more widespread use as computer 
hardware and algorithms improved. With the explosion of data in the 21st 
century, machine learning has become increasingly important. The 
development of big data, cloud computing, and deep learning technologies 
have enabled more accurate and efficient algorithms and models to be 
developed for machine learning (Bell, 2022). Machine learning is now 
widely used in various fields, such as natural language processing, image 
and video processing speech recognition, medicine, finance, e-commerce, 
and intelligent transportation. Catalytic descriptors link structures and 
properties, enabling experimentalists to quickly screen materials from 
databases and optimize existing catalysts. The combination of theoretical 
and experimental descriptors provides a more reasonable method for 
catalyst design. However, identifying descriptors and discovering how 
they determine the activity and selectivity of electrocatalysts is a challenge 
and largely underexplored. In situ characterization combined with high 
throughput computing and machine learning is expected to break the 
bottleneck of HER catalyst development. In recent years, two-dimensional 
MXenes as HER catalysts have received attention in both experimental and 
theoretical calculations, but they mainly focus on the regulation of catalytic 
activity of perfect materials and are relatively lacking in the design of 
catalytic performance and the construction of catalytic descriptors for 
single atom doped and ordered alloy two-dimensional MXenes materials, 
which play an important role in the field of catalysis. 

2.    METHODOLOGY 

Based on Density Functional Theory of quantum mechanics, the crystal 
structure and physical properties of materials such as force, heat, light, 
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electricity and magnetism can be determined by self-consistent 
calculation. With the rapid development of high-performance computing 
technology and various professional computing software, DFT computing 
has been deeply applied in condensed matter physics, materials science 
(design, simulation computing and virtual synthesis) and biochemistry. 
There is no doubt that DFT calculation, as a conventional research model, 
has become a bridge and supplement to theoretical and experimental 
research. And combined with high-throughput, artificial intelligence and 
big data, it is expected to play a wider role in computational physics, 
chemistry and materials. The theoretical basis of density functional theory 
is based on two basic mathematical theorems proved by two scientists, 
Kohn and Hohenberg, and a set of equations deduced by Kohn and Sham in 
the mid-197os. The first theorem proved by Kohn and Hohenberg shows 
that there is a one-to-one correspondence between the ground-state wave 
function and the ground-state charge density. The specific content can be 
described as: the ground state energy obtained from the Schrodinger 
equation is the only functional of charge density. The second theorem 
proved by Kohn and Hohenberg is that under the condition that the 
number of particles remains constant, the energy functional takes the 
minimum of the correct charge density, and the minimum is the ground 
state energy of the system. According to the Hohenberg-Kohn theorem, the 
total non-relativistic Hamiltonian for a multiparticle system can be written 
Formula 1 

𝐻 = −
ℎ2

2𝑚
∑ ∅2 + 𝑉𝑒𝑥𝑡(𝑟) +

1

2
∑

𝑒2

|𝑟𝑖−𝑟|𝑖≠𝐿𝑖                                                                  (1) 

The energy form of the corresponding system is as follows Formula 2: 

 𝐸𝐻𝐾[𝑃(𝑟)] = 𝑇[𝑝(𝑟)]+U[𝑝(𝑟)]+Ex[𝑝(𝑟)]                                                           (2) 

On the right side of the equation, the kinetic energy, the potential energy, 
and the exchange correlation function (including all other interactions) are 
represented in turn. 

Although Hohenberg-Kohn Theorem I rigorously proves the existence of a 
charge-density functional that can be used to solve the Schrodinger 
equation, the exact form of the functional is still uncertain. Fortunately, 
Hohenberg-Kohn Theorem II gives an important feature of this functional, 
which is that the charge density that minimizes the global functional is the 
true charge density corresponding to a complete solution of the 
Schrodinger equation. If the form of this "true" functional is known, the 
charge density can be adjusted until the energy determined by the 
functional is minimized, and the corresponding charge density can be 
found. In practical applications, the variational principle is often used in 
approximate expressions of functional. In the process of finding the 
minimum energy solution of the total energy functional, Kohn and Sham 
gave the following result: Solving the correct charge density can be 
expressed as solving a set of equations, each of which is related to only one 
electron. Then the electron density function can be expressed as Formula 
3: 

𝑝(𝑟) = ∑ |∅(𝑟𝑖)|2 𝑎
𝑖=1                                                                                                                  (3) 

The total energy of the hypothetical system can be expressed as Formula 
4: 

𝐸𝑠 = 𝑇𝑠[𝑝(𝑟)] + 𝑈𝐻[𝑝(𝑟)]                                                                            (4) 

Combined with Hohenberg-Kohn Theorem I, the exchange interaction 
terms can be obtained by simultaneous equations Formula 5: 

𝐸𝑥𝑐[𝑝(𝑟)] = 𝑇[𝑝(𝑟)] − 𝑇𝑆[𝑃(𝑟)] + 𝑈[𝑝(𝑟)] − 𝑈𝐻[𝑝(𝑟)]               (5) 

Therefore, all complex interacting parts and unknown terms are divided 
into exchange dependent terms. Therefore, finding suitable exchange 
correlation function is the key to density functional theory. 

Machine learning descriptors accurately predict HER catalytic activity 
from the above electronic structure analysis and Fermi level and directly 
interacting with. It was found that the electronic structure of Ti2Co2-STM 
played a dominant role in HER catalytic activity. The prediction accuracy 
of Spz to the target value is less than 75%. Moreover, in Ti2Co2-STM 
system doped with the same metal monatomic, the A values of the active 
sites & and & are the same, and the catalytic activity of different active sites 
cannot be distinguished. Therefore, more advanced methods are needed to 
build accurate descriptors. 

Machine learning (ML) is becoming increasingly popular as a new research 
tool for semi-automated and quantitative data correlation discovery in 
materials science. In this work, 18 kinds of atomic information, crystal 
parameters, electronic structure and other characteristic parameters with 

physical significance that are initially related to HER catalytic activity are 
selected. By analyzing the importance of the characteristic parameters to 
the catalytic activity of the target value HER and the correlation between 
the parameters, the dimension of the characteristic parameters is 
constantly reduced. Table 1 It is found that when the characteristic 
parameter is reduced to 5 dimensions, the accuracy and 2 can still be 
maintained to 0.93, the error and MM: is only 79eV. 

Table 1: The number and type of machine learning characteristic 
parameters, and the corresponding prediction accuracy and error. 

Number Feature R2 Rmse 

5 [dM1-00 dM0-00 Med EFerml Bm] 0.931 0.079 

4 [dM1-00 EFerm  Med Rm] 0.926 0.083 

3 [dM1-00 EFerm CHM] 0.9 0.09 

2 [dM1-00 EFerm] 0.86 0.11 

1 [EFerml] 0.746 0.153 

3.    EXPERIMENT 

More significantly, the characteristic parameters from dimension 1 to 
dimension 5 all contain Fermi level, which is consistent with the key 
parameter affecting HER catalytic activity revealed in the above analysis. It 
shows that the key parameters of catalytic performance can be found 
through machine learning. Further analysis shows that starting from the 
second characteristic parameter, it contains the information of the local 
structural distortion of the reaction, which is the bond length between the 
doped metal single atom and the surface oxygen atom. It just verified our 
qualitative analysis above that the more far away from metal single atom 
doping position electronic structure description porphyrite, the better the 
prediction effect. The above machine learning shows that in addition to the 
Fermi level, the bond length between the doped metal single atom and the 
surface oxygen atom is the secondary factor. In addition, it can be seen 
from Figure 1 (a-b) that with the increase of the dimension of characteristic 
parameters, the accuracy keeps improving and the error keeps decreasing. 
When the dimension reaches 5, the growth of accuracy gradually slows 
down and the error reduction gradually becomes stable. Further Figure 1 
(c-d) shows that for different catalytic active sites &, & and &, the 
prediction accuracy is greatly improved after taking into account the 
characteristic parameter of the information about the local structural 
distortion of the reaction, which is the bond length between the doped 
metal single atom and the surface oxygen atom. The prediction accuracy 
was up to o.99, indicating that the machine learning model captures the 
key parameters regulating HER catalytic activity of Ti2Co2-STM. The above 
analysis indicates that machine learning is an effective means to find 
accurate descriptors for the regulation of multiple factors on HER catalytic 
activity. 

 

Figure 1: The variation of prediction accuracy and error with the 
increase of characteristic parameters for different equivalent catalytic 

active sites. 

Under acidic conditions, HER has two different reaction mechanisms: 
Volmer-Tafel and Volmer-HeyrovskyE67 '. In both mechanisms, the first 
step involves the adsorption and reduction of protons, known as the 
Volmer reaction. When a hydrogen atom is adsorbed on the surface of the 
electrocatalyst, there are two possible reactions in the second step: 1) react 
with another adsorbed hydrogen atom to produce hydrogen; 2) or react 
with solvated protons and surface electrons to form oxygen. The first is a 
Langmuir-Hinshelwood-type mechanism involving Tafel reactions. The 
second is the Eley-Rideal type mechanism, which involves the Heyrovsky 
reaction. The main difference between the Tafel reaction and the 
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Heyrovsky reaction is that the Tafel reaction does not involve electron 
transfer, while the Heyrovsky reaction does. Thus, the Heyrovsky reaction 
can be driven by potential, while the Tafel reaction is potential-
independent and needs to be activated by heat (Bell, 2022). According to 
the Bronsted-Evans-Polanyi relation, the activation energy of HER is 
linearly correlated with the adsorption energy of hydrogen. Therefore, the 
adsorption capacity of hydrogen is an important index to evaluate the 
catalyst. Exchange current density j ○ is one of the most important catalytic 
indexes that can be directly measured in experiments. As shown in Figure 
2, if the current density i2 is large enough (red curve), the system can 
provide a large current even at very low overpotential, which means that 
the whole reaction is very easy to activate, and the electrode dynamics are 
very fast. As the jo decreases, as in the green and blue curves, there is no 
significant current unless a large activation overpotential is applied. As 
shown in Figure 3, CN ties are highest on both sides and lower in the middle 
(Shavlik et al., 1990). PD is the highest at -0.4, up to 4.5. Mos is the highest 
at 0.8, up to 6. When drawing the relationship curve between the 
experimentally measured exchange current density CN and the Gibbs free 
energy AGH of hydrogen adsorption for various catalyst materials, it is 
found that there is a volcanic model relationship. The PD value at the 
maximum reaction rate is close to 1.5. It is shown that if the binding of 
hydrogen to the surface is too weak, the Volmer step will limit the overall 
reaction rate. However, if the binding is too strong, the desorption 
(Heyrovsky/Tafel) step limits the reaction rate. Therefore, the necessary 
condition for the activity of hydrogen evolution catalyst is Mos. The results 
also reflect Sabatier's principle, which states that the best catalysts should 
bind atoms and molecules with optimal binding strength: not too weak to 
activate reactants and not too strong to desorb products. 

 

Figure 2: Exchange current density 

 

Figure 3: Kahn adsorbs Gibbs free energy 

4.   DISCUSSION 

HER catalytic properties of ft two-dimensional NM- Ti2Co2MXenes with 
large surface area and corrosion resistance were investigated. 14 kinds of 
nonmetallic atoms with different valence electron numbers and periods 
were selected by DFT theory, and their catalytic properties were controlled 
by surface doping. The results show that surface nonmetallic doping can 
optimize the catalytic activity and band gap of catalyst while maintaining 
the relative stability of the catalyst. (More importantly, the valence 
electron and charge transfer descriptor can accurately predict: The trend 
of HER catalytic activity of NM- Ti2Co2MXenes has shifted the design of 
catalysts from traditional trial and error to rational theoretical guidance. 
Systematic analysis of the electronic structure of two-dimensional NM- 
Ti2Co2MXenes not only explains the rationality of this simple coupling 
description, but also reveals the origin of the regulation of catalytic activity 
of two-dimensional NM- Ti2Co2MXenes. The e study provides theoretical 
basis for the design and high throughput screening of HER catalysts. 

Screening and study of HER properties of gold doped Ti2Co2 by Occhuan 
observation method / 3d, 4d, 5di. ter. The adsorption energy of two-
dimensional MXenes-OBAs was calculated using an automatic process of 
feature engineering. We developed machine learning process code based 
on Scikit-leam and published it in the open source MGEdata. As shown in 
Figure 4, this workflow consists of three parts: (a) Functional design. 
According to our knowledge of the origin of HER activity, 41 characteristics 
were selected, including electronic and geometric parameters of elements. 
We extended the main features to a total of 63 by simple summary 
statistics (mean and standard deviation) as initial features to train a 
machine learning model predicting H adsorption energy based on 420 sets 
of DFT calculated data. (b) Feature selection. In this paper, a 
comprehensive feature search strategy based on reverse selection is 
designed based on feature importance and feature correlation. AdaBoost 
model and Pearson correlation coefficient were used to calculate the 
significance and correlation of features. After the importance and 
correlation of the features are obtained, the features with lower rank and 
higher correlation coefficient than the threshold are removed from the 
feature group. AdaBoost was used to re-model the retained features with 
low threshold correlation coefficient to further reduce the number of 
features. In this way, the resulting features can remain both independent 
and modeling accurate. In this work, the initial threshold is 0.9 and the rate 
0f decline is 0.1. (c) Multi-perspective evaluation. To test the validity of the 
selected features, we used a variety of schemes to evaluate the features. 
Firstly, different segmentation data are used to evaluate the modeling 
results of the features. Secondly, 1o-fold cross-validation was carried out 
on the data to further check the stability of the features. Finally, using 
support vector regression , gaussian process regression (GPR), P ex-wife-
to-be machine return to forest, a. a. (RFR) model and AdaB AdaB 
multipleine learning methods, such as the universality of the 
characteristics of the test. 

 

Figure 4: Machine learning processes. 

The study found that single atom metal doping can improve its ehrs do M | 
catalytic activity and electrical conductivity, thus make Ti2Co2 - V, Nb, Mo, 
W and Re performance of catalyst optimal Ti2Co2. Special foot Ti2Co2 - W: 
U have good catalytic activity, electrical conductivity, and stability. The 
electronic structure level understanding of HER regulation of Ti2Co2-STM 
is analyzed by using the theory of electron structure. The results show that 
the change of HER catalytic activity is caused by the rearrangement of 
electric f structure near the Fermi level caused by the hybridization of P 
and P-D orbitals (Sar et al., 2012). The origin and trend of HER catalysis of 
Ti2Co2-STM were revealed by qualitative analysis of the electron structure 
at the Fermi level and Opz orbital band center. Machine learning method 
was used to construct a high precision HER catalytic activity descriptor 
with clear physical significance, which could reveal the difference of 
catalytic activity of + with the same active site. This paper provides a 
theoretical basis for the design of Ti2Co2-STM or other doped two-
dimensional MXene-STM catalysts, which is conducive to the synthesis and 
application off ideal non-precious metal HER catalysts.  

5.   CONCLUSION 

Hydrogen evolution plays a key role in electrochemistry and energy 
conversion technology. The key to promote the industrial application of 
electrolytic hydrogen evolution is to find catalysts with low price and 
superior performance. Catalytic descriptors can link the structure and 
properties of catalysts, enabling rapid screening of new materials and 
optimization of existing catalyst performance. This work focuses on HER 
catalytic properties of complex two-dimensional MXenes materials and 
explores potential excellent HER catalysts by integrating DFT high-
throughput computing with machine learning methods. The catalytic 
activity was predicted by using descriptors and the origin mechanism of 
the catalytic activity at the electronic structure level was revealed. Above 
work not only for the synthesis of various complex two-dimensional 
MXenes provides data reference material, with a clear physical meaning 
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and use of descriptors for more two-dimensional  MXens - its ehrs catalyst 
design provides a theoretical guidance. High-throughput computing 
combined with machine learning and integration way of the descriptor is 
expected to become efficient design is an effective means of its ehrs 
catalyst in the future. In the future, machine learning and descriptor 
methods could quickly screen ideal electrode materials. While doping or 
alloying may break the linear correlation between adsorption energy and 
diffusion barrier, machine learning can be used to give full play to the 
advantages of being good at dealing with complex materials or correlation. 
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