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Machine learning has emerged as a powerful tool for analyzing complex data sets and making predictions in

a wide range of applications, including catalysis. Bycombining statistical methods, algorithms, and
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computational power, machine learning can help identify patterns and relationships in catalytic systems that
are difficult or impossible to discern using traditional approaches. This can lead to more efficient and effective
catalyst design, optimization, and prediction of catalytic activity. Machine learning has already been

successfully applied to various aspects of catalysis, including catalyst discovery, reaction mechanism
identification, and kinetic modeling. The continued integration of machine learning with catalysis research
holds great promise for advancing our understanding of catalytic systems and developing new and improved
catalysts for important industrial processes.
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1. INTRODUCTION

The background of catalytic materials can be traced back to ancient times
when people started using catalytic materials in the production of pottery.
However, the understanding of catalytic reactions did not begin to develop
until the 18th century. At that time, it was discovered that some chemical
reactions required high temperatures to occur, but under certain
conditions, these reactions could occur at lower temperatures, which is the
basic concept of catalytic reactions. Catalytic materials are substances that
can promote chemical reactions, accelerate reaction rates, improve
efficiency and yield, and reduce energy requirements and costs. Catalytic
materials are widely used in fields such as chemistry, medicine, energy,
and others, such as automotive emission control, chemical production,
pharmaceuticals biotechnology, batteries, and fuel cells. Machine learning
is a branch of artificial intelligence aimed at allowing computer systems to
automatically learn and improve task performance without explicit
programming (Mitchel, 2007; Zhou, 2021; Jordan and Mitchell, 2015). The
history of machine learning dates back to the 1950s and 1960s, when
computer scientists began using algorithms and statistical methods to
enable computer systems to automatically learn patterns and rules from
data (Mahesh, 2020; Carleo, 2020). However, the application of machine
learning was severely limited by hardware and algorithm capabilities at
that time. It wasn't until the 1980s that machine learning began to gain
wider usage with the development of computer hardware and algorithms.
With the explosive growth of data, machine learning has become
increasingly important in the 21st century. The development of big data,
cloud computing, and deep learning technologies have enabled the
implementation of more accurate and efficient algorithms and models for
machine learning (E1 Waqa and Murphy, 2015). Machine learning is now
widely applied in various fields such as natural language processing, image
and video processing, speech recognition, medicine, finance, e-commerce,
and intelligent transportation, among others (Aladdin, 2021). Machine
learning is a branch of artificial intelligence that aims to improve task
performance by allowing computer systems to learn and improve
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automatically without explicit programming. The history of machine
learning can be traced back to the 1950s and 1960s, when computer
scientists began experimenting with algorithms and statistical methods to
enable computer systems to learn patterns and rules from data. However,
the application of machine learning was limited by hardware and
algorithm capabilities at that time (Bi, 2022). It wasn't until the 1980s that
machine learning began to gain more widespread use as computer
hardware and algorithms improved. With the explosion of data in the 21st
century, machine learning has become increasingly important. The
development of big data, cloud computing, and deep learning technologies
have enabled more accurate and efficient algorithms and models to be
developed for machine learning (Bell, 2022). Machine learning is now
widely used in various fields, such as natural language processing, image
and video processing speech recognition, medicine, finance, e-commerce,
and intelligent transportation. Catalytic descriptors link structures and
properties, enabling experimentalists to quickly screen materials from
databases and optimize existing catalysts. The combination of theoretical
and experimental descriptors provides a more reasonable method for
catalyst design. However, identifying descriptors and discovering how
they determine the activity and selectivity of electrocatalysts is a challenge
and largely underexplored. In situ characterization combined with high
throughput computing and machine learning is expected to break the
bottleneck of HER catalyst development. In recent years, two-dimensional
MXenes as HER catalysts have received attention in both experimental and
theoretical calculations, but they mainly focus on the regulation of catalytic
activity of perfect materials and are relatively lacking in the design of
catalytic performance and the construction of catalytic descriptors for
single atom doped and ordered alloy two-dimensional MXenes materials,
which play an important role in the field of catalysis.

2. METHODOLOGY

Based on Density Functional Theory of quantum mechanics, the crystal
structure and physical properties of materials such as force, heat, light,
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electricity and magnetism can be determined by self-consistent
calculation. With the rapid development of high-performance computing
technology and various professional computing software, DFT computing
has been deeply applied in condensed matter physics, materials science
(design, simulation computing and virtual synthesis) and biochemistry.
There is no doubt that DFT calculation, as a conventional research model,
has become a bridge and supplement to theoretical and experimental
research. And combined with high-throughput, artificial intelligence and
big data, it is expected to play a wider role in computational physics,
chemistry and materials. The theoretical basis of density functional theory
is based on two basic mathematical theorems proved by two scientists,
Kohn and Hohenberg, and a set of equations deduced by Kohn and Sham in
the mid-197o0s. The first theorem proved by Kohn and Hohenberg shows
that there is a one-to-one correspondence between the ground-state wave
function and the ground-state charge density. The specific content can be
described as: the ground state energy obtained from the Schrodinger
equation is the only functional of charge density. The second theorem
proved by Kohn and Hohenberg is that under the condition that the
number of particles remains constant, the energy functional takes the
minimum of the correct charge density, and the minimum is the ground
state energy of the system. According to the Hohenberg-Kohn theorem, the
total non-relativistic Hamiltonian for a multiparticle system can be written
Formula 1

H= =500 4 Vo () + 2D - 1
- om &t ext " o &i#L [T ( )
The energy form of the corresponding system is as follows Formula 2:

Epk[P(1)] = Tlp(M]+U[p(M]+Ex[p(1)] (2)

On the right side of the equation, the kinetic energy, the potential energy,
and the exchange correlation function (including all other interactions) are
represented in turn.

Although Hohenberg-Kohn Theorem I rigorously proves the existence of a
charge-density functional that can be used to solve the Schrodinger
equation, the exact form of the functional is still uncertain. Fortunately,
Hohenberg-Kohn Theorem II gives an important feature of this functional,
which is that the charge density that minimizes the global functional is the
true charge density corresponding to a complete solution of the
Schrodinger equation. If the form of this "true" functional is known, the
charge density can be adjusted until the energy determined by the
functional is minimized, and the corresponding charge density can be
found. In practical applications, the variational principle is often used in
approximate expressions of functional. In the process of finding the
minimum energy solution of the total energy functional, Kohn and Sham
gave the following result: Solving the correct charge density can be
expressed as solving a set of equations, each of which is related to only one
electron. Then the electron density function can be expressed as Formula
3:

p(r) = LL10)I? 3

The total energy of the hypothetical system can be expressed as Formula
4:

Es = Ts[p(M)] + Uy [p(M)] (4)

Combined with Hohenberg-Kohn Theorem I, the exchange interaction
terms can be obtained by simultaneous equations Formula 5:

Eyc[p(m)] = Tlp(M)] - Ts[P(] + Ulp(M)] — Un[p()] (%)

Therefore, all complex interacting parts and unknown terms are divided
into exchange dependent terms. Therefore, finding suitable exchange
correlation function is the key to density functional theory.

Machine learning descriptors accurately predict HER catalytic activity
from the above electronic structure analysis and Fermi level and directly
interacting with. It was found that the electronic structure of Ti2Co2-STM
played a dominant role in HER catalytic activity. The prediction accuracy
of Spz to the target value is less than 75%. Moreover, in Ti2Co2-STM
system doped with the same metal monatomic, the A values of the active
sites & and & are the same, and the catalytic activity of different active sites
cannot be distinguished. Therefore, more advanced methods are needed to
build accurate descriptors.

Machine learning (ML) is becoming increasingly popular as a new research
tool for semi-automated and quantitative data correlation discovery in
materials science. In this work, 18 kinds of atomic information, crystal
parameters, electronic structure and other characteristic parameters with

physical significance that are initially related to HER catalytic activity are
selected. By analyzing the importance of the characteristic parameters to
the catalytic activity of the target value HER and the correlation between
the parameters, the dimension of the characteristic parameters is
constantly reduced. Table 1 It is found that when the characteristic
parameter is reduced to 5 dimensions, the accuracy and 2 can still be
maintained to 0.93, the error and MM: is only 79eV.

Number Feature R2 Rmse
5 [dM1-00 dM0-00 Med EFerml Bm] 0.931 0.079
4 [dM1-00 EFerm Med Rm] 0.926 0.083
3 [dM1-00 EFerm CHM] 0.9 0.09
2 [dM1-00 EFerm] 0.86 0.11
1 [EFerml] 0.746 0.153

3. EXPERIMENT

More significantly, the characteristic parameters from dimension 1 to
dimension 5 all contain Fermi level, which is consistent with the key
parameter affecting HER catalytic activity revealed in the above analysis. It
shows that the key parameters of catalytic performance can be found
through machine learning. Further analysis shows that starting from the
second characteristic parameter, it contains the information of the local
structural distortion of the reaction, which is the bond length between the
doped metal single atom and the surface oxygen atom. It just verified our
qualitative analysis above that the more far away from metal single atom
doping position electronic structure description porphyrite, the better the
prediction effect. The above machine learning shows that in addition to the
Fermi level, the bond length between the doped metal single atom and the
surface oxygen atom is the secondary factor. In addition, it can be seen
from Figure 1 (a-b) that with the increase of the dimension of characteristic
parameters, the accuracy keeps improving and the error keeps decreasing.
When the dimension reaches 5, the growth of accuracy gradually slows
down and the error reduction gradually becomes stable. Further Figure 1
(c-d) shows that for different catalytic active sites &, & and &, the
prediction accuracy is greatly improved after taking into account the
characteristic parameter of the information about the local structural
distortion of the reaction, which is the bond length between the doped
metal single atom and the surface oxygen atom. The prediction accuracy
was up to 0.99, indicating that the machine learning model captures the
key parameters regulating HER catalytic activity of Ti2Co2-STM. The above
analysis indicates that machine learning is an effective means to find
accurate descriptors for the regulation of multiple factors on HER catalytic
activity.

Dimension
1.5
1 -
0.5
[] -
1 2 3 4 5
a b C d

Figure 1: The variation of prediction accuracy and error with the
increase of characteristic parameters for different equivalent catalytic
active sites.

Under acidic conditions, HER has two different reaction mechanisms:
Volmer-Tafel and Volmer-HeyrovskyE67 '. In both mechanisms, the first
step involves the adsorption and reduction of protons, known as the
Volmer reaction. When a hydrogen atom is adsorbed on the surface of the
electrocatalyst, there are two possible reactions in the second step: 1) react
with another adsorbed hydrogen atom to produce hydrogen; 2) or react
with solvated protons and surface electrons to form oxygen. The first is a
Langmuir-Hinshelwood-type mechanism involving Tafel reactions. The
second is the Eley-Rideal type mechanism, which involves the Heyrovsky
reaction. The main difference between the Tafel reaction and the
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Heyrovsky reaction is that the Tafel reaction does not involve electron
transfer, while the Heyrovsky reaction does. Thus, the Heyrovsky reaction
can be driven by potential, while the Tafel reaction is potential-
independent and needs to be activated by heat (Bell, 2022). According to
the Bronsted-Evans-Polanyi relation, the activation energy of HER is
linearly correlated with the adsorption energy of hydrogen. Therefore, the
adsorption capacity of hydrogen is an important index to evaluate the
catalyst. Exchange current density j © is one of the most important catalytic
indexes that can be directly measured in experiments. As shown in Figure
2, if the current density i2 is large enough (red curve), the system can
provide a large current even at very low overpotential, which means that
the whole reaction is very easy to activate, and the electrode dynamics are
very fast. As the jo decreases, as in the green and blue curves, there is no
significant current unless a large activation overpotential is applied. As
shown in Figure 3, CN ties are highest on both sides and lower in the middle
(Shavlik et al., 1990). PD is the highest at -0.4, up to 4.5. Mos is the highest
at 0.8, up to 6. When drawing the relationship curve between the
experimentally measured exchange current density CN and the Gibbs free
energy AGH of hydrogen adsorption for various catalyst materials, it is
found that there is a volcanic model relationship. The PD value at the
maximum reaction rate is close to 1.5. It is shown that if the binding of
hydrogen to the surface is too weak, the Volmer step will limit the overall
reaction rate. However, if the binding is too strong, the desorption
(Heyrovsky/Tafel) step limits the reaction rate. Therefore, the necessary
condition for the activity of hydrogen evolution catalyst is Mos. The results
also reflect Sabatier's principle, which states that the best catalysts should
bind atoms and molecules with optimal binding strength: not too weak to
activate reactants and not too strong to desorb products.
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Figure 2: Exchange current density
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Figure 3: Kahn adsorbs Gibbs free energy
4. DISCUSSION

HER catalytic properties of ft two-dimensional NM- Ti2Co2MXenes with
large surface area and corrosion resistance were investigated. 14 kinds of
nonmetallic atoms with different valence electron numbers and periods
were selected by DFT theory, and their catalytic properties were controlled
by surface doping. The results show that surface nonmetallic doping can
optimize the catalytic activity and band gap of catalyst while maintaining
the relative stability of the catalyst. (More importantly, the valence
electron and charge transfer descriptor can accurately predict: The trend
of HER catalytic activity of NM- Ti2Co2MXenes has shifted the design of
catalysts from traditional trial and error to rational theoretical guidance.
Systematic analysis of the electronic structure of two-dimensional NM-
Ti2Co2MXenes not only explains the rationality of this simple coupling
description, but also reveals the origin of the regulation of catalytic activity
of two-dimensional NM- Ti2Co2MXenes. The e study provides theoretical
basis for the design and high throughput screening of HER catalysts.

Screening and study of HER properties of gold doped Ti2Co2 by Occhuan
observation method / 3d, 4d, 5di. ter. The adsorption energy of two-
dimensional MXenes-OBAs was calculated using an automatic process of
feature engineering. We developed machine learning process code based
on Scikit-leam and published it in the open source MGEdata. As shown in
Figure 4, this workflow consists of three parts: (a) Functional design.
According to our knowledge of the origin of HER activity, 41 characteristics
were selected, including electronic and geometric parameters of elements.
We extended the main features to a total of 63 by simple summary
statistics (mean and standard deviation) as initial features to train a
machine learning model predicting H adsorption energy based on 420 sets
of DFT calculated data. (b) Feature selection. In this paper, a
comprehensive feature search strategy based on reverse selection is
designed based on feature importance and feature correlation. AdaBoost
model and Pearson correlation coefficient were used to calculate the
significance and correlation of features. After the importance and
correlation of the features are obtained, the features with lower rank and
higher correlation coefficient than the threshold are removed from the
feature group. AdaBoost was used to re-model the retained features with
low threshold correlation coefficient to further reduce the number of
features. In this way, the resulting features can remain both independent
and modeling accurate. In this work, the initial threshold is 0.9 and the rate
0f decline is 0.1. (c) Multi-perspective evaluation. To test the validity of the
selected features, we used a variety of schemes to evaluate the features.
Firstly, different segmentation data are used to evaluate the modeling
results of the features. Secondly, 1o-fold cross-validation was carried out
on the data to further check the stability of the features. Finally, using
support vector regression , gaussian process regression (GPR), P ex-wife-
to-be machine return to forest, a. a. (RFR) model and AdaB AdaB
multipleine learning methods, such as the universality of the
characteristics of the test.

(a) (b) (c) Muitiple
Feature Feature Perspectives
Design Selection Evaluation

Geometric ‘Mukiply Mode! ‘
) ' Parameters ’ roatre Bl ’ l Evaluation ’
Importance | Correlation

Elemantal : ) [ Multiply Spitt

Parameters Evaluation
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Suatistics & l Evaluation

Figure 4: Machine learning processes.

The study found that single atom metal doping can improve its ehrs do M |
catalytic activity and electrical conductivity, thus make Ti2Co2 - V, Nb, Mo,
W and Re performance of catalyst optimal Ti2Co2. Special foot Ti2Co2 - W:
U have good catalytic activity, electrical conductivity, and stability. The
electronic structure level understanding of HER regulation of Ti2Co2-STM
is analyzed by using the theory of electron structure. The results show that
the change of HER catalytic activity is caused by the rearrangement of
electric f structure near the Fermi level caused by the hybridization of P
and P-D orbitals (Sar et al., 2012). The origin and trend of HER catalysis of
Ti2Co2-STM were revealed by qualitative analysis of the electron structure
at the Fermi level and Opz orbital band center. Machine learning method
was used to construct a high precision HER catalytic activity descriptor
with clear physical significance, which could reveal the difference of
catalytic activity of + with the same active site. This paper provides a
theoretical basis for the design of Ti2C02-STM or other doped two-
dimensional MXene-STM catalysts, which is conducive to the synthesis and
application off ideal non-precious metal HER catalysts.

5. CONCLUSION

Hydrogen evolution plays a key role in electrochemistry and energy
conversion technology. The key to promote the industrial application of
electrolytic hydrogen evolution is to find catalysts with low price and
superior performance. Catalytic descriptors can link the structure and
properties of catalysts, enabling rapid screening of new materials and
optimization of existing catalyst performance. This work focuses on HER
catalytic properties of complex two-dimensional MXenes materials and
explores potential excellent HER catalysts by integrating DFT high-
throughput computing with machine learning methods. The catalytic
activity was predicted by using descriptors and the origin mechanism of
the catalytic activity at the electronic structure level was revealed. Above
work not only for the synthesis of various complex two-dimensional
MXenes provides data reference material, with a clear physical meaning
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and use of descriptors for more two-dimensional MXens - its ehrs catalyst
design provides a theoretical guidance. High-throughput computing
combined with machine learning and integration way of the descriptor is
expected to become efficient design is an effective means of its ehrs
catalyst in the future. In the future, machine learning and descriptor
methods could quickly screen ideal electrode materials. While doping or
alloying may break the linear correlation between adsorption energy and
diffusion barrier, machine learning can be used to give full play to the
advantages of being good at dealing with complex materials or correlation.
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