

Contents List available at VOLKSON PRESS New Materials and Intelligent Manufacturing (NMIM) DOI : http://doi.org/10.26480/icnmim.01.2018.16.20 Journal Homepage: https://topicsonchemeng.org.my/

ISBN: 978-1-948012-12-6

A NEW SINGLE-COMPONENT CA20AL26MG3SI3068:DY3+, EU3+ POTENTIAL PHOSPHOR FOR WHITE-LIGHT EMITTING DIODES: LUMINESCENCE PROPERTIES, ENERGY TRANSFER AND MULTICOLOR LUMINESCENCE

Bo Yuan¹, Yanhua Song², Weidong Wang¹, Haifeng Zou², Li Kong¹, Chuanbo Dai^{1*}

¹College of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132000, PR China ²College of Chemistry, Jilin University, Changchun 130012, PR China *Corresponding author email: <u>hgxy356900963@sohu.com</u>

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

ARTICLE DETAILS	ABSTRACT
Article History:	In this study, novel single-component Ca ₂₀ Al ₂₆ Mg ₃ Si ₃ O ₆₆ :Dy ³⁺ , Eu ³⁺ phosphor has been successfully prepared by high temperature solid state reaction. The crystal structure, luminescent property, energy transfer and multicolor
Received 26 June 2018 Accepted 2 July 2018 Available online 1 August 2018	emission behavior were investigated in detail. The structure was characterized by X-ray diffraction (XRD) and the results indicate that the as-prepared samples are of pure orthorhombic phase of $Ca_{20}Al_{26}Mg_3Si_3O_{68}$ and Dy^{3+} and Eu^{3+} are totally incorporated into the host lattice of $Ca_{20}Al_{26}Mg_3Si_3O_{68}$. The Dy^{3+} or Eu^{3+} single doped samples exhibit strong yellow and red emissions, originating from the $^{4}F_{9/2} \rightarrow ^{6}H_{13/2}$ transition of Dy^{3+} and the $^{5}D_{0} \rightarrow ^{7}F_{1}$ (J=0, 1, 2, 3) transitions of Eu^{3+} and the optimal concentration of Dy^{3+} and Eu^{3+} ions in $Ca_{20}Al_{26}Mg_3Si_3O_{68}$ were determined to be 5 mol% and 11 mol%, respectively. Meanwhile, the energy migration from Dy^{3+} to Eu^{3+} in co-doping samples has been confirmed by the excitation and emission spectra and the process was reported in detail. Based on the energy transfer, under the excitation of Jy^{3+} and Eu^{3+} ions, indicating that the phosphors $Ca_{20}Al_{26}Mg_3Si_3O_{68}$: Dy^{3+} , Eu^{3+} with tunable multicolor emissions may have potential application in pc-white LEDs.
	KEYWORDS
	Ca ₂₀ Al ₂₆ Mg ₃ Si ₃ O ₆₈ :Dy ³⁺ , Eu ³⁺ , Energy transfer, Multi-color emission, WLED

1. INTRODUCTION

In recent years, with the issues of the energy and environmental becoming increasingly prominent, white-light-emitting diodes (WLEDs) have been widely studied and used in the lighting and display fields due to their special superiorities of saving energy, long lifetime, reliability, environmental friendly and so on [1-3]. Nowadays, in several ways to assemble WLEDs, the most prevalent strategy is based on YAG: Ce3+ as a kind of broadband yellow phosphor coated on a blue InGaN chip, however, because of the innate lack of red-emission, this combination usually has the problems of low color rendering index (CRI) and high correlated color temperature (CCT) [4,5]. Another method is to combine n-UV LED with blue, green and red phosphors which is considered to be more stable and flexible. But the shortcomings of the reabsorption of blue light by red and green phosphors appear, resulting in lower external quantum luminous efficiency of the resulting w-LEDs. Based on this situation, the single-phase phosphor-converted UV WLEDs can overcome these drawbacks because it possesses some surprisingly favorable properties, such as tunable CIE chromaticity coordinates, excellent Ra values and color stability, etc. Therefore, an increasing number of researchers have paid attention to studying and developing full-color emitting single-phase phosphors [6-10].

Co-doping sensitizer and activator into the same host based on the energy transfer is one of the approaches to produce white light or color-tunable emissions from single phase phosphors. Many materials can be the matrix, such as phosphates, lanthanide-doped oxides and fluorides, among these materials, the aluminosilicate (such as Ca₂₀Al₂₆Mg₃Si₃O₆₈) is regarded as an interesting and highly-focused host luminescent material for rare earth ions emission due to its excellent chemical and thermal stability and proper crystal field to promote luminescence [11-13]. Among various RE

trivalent ions, dysprosium (Dy3+) is well known for its emission in the yellow and blue regions corresponding to the ${}^4F_{9/2} {\rightarrow} {}^6H_{13/2}$ and ${}^4F_{9/2} {\rightarrow} {}^6H_{15/2}$ transitions, respectively. If the ratio of blue to yellow emission is appropriate, white emission can be attained by using Dy3+ ions alone [14,15]. But the combination of blue and yellow emissions lacks the red part, the Eu³⁺ that emits red light corresponding to the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition can be introduced [16]. Thereby, it is feasible to produce Dy³⁺ and Eu³⁺ coactivated white light or tunable color phosphors. At present, Dy3+ and Eu3+ co-doped single-phase phosphors have been vigorously studied and reported, such as $Na_3Gd(PO_4)_2$, $BaLa_2WO_7$, $BaCa_2Y_6O_{12}$ and Ca₂La₈(GeO₄)₆O₂ [1,8,17,18]. However, their work have solely focused on the multicolor emissions based on the energy transfer [19,20]. Hence, different with previous studies, by taking into consideration the characteristic emissions of dysprosium and europium ions, it is expected that multicolor emissions could be achieved in Ca20Al26Mg3Si3O68 system by adjusting different excitation wavelengths and properly designed activator contents. Dy³⁺-Eu³⁺ co-doping aluminosilicate Ca₂₀Al₂₆Mg₃Si₃O₆₈ single-phase phosphor is novel and its synthetic process is simple and convenience. Meanwhile, the luminosity is ideal and energy transfer in Ca₂₀Al₂₆Mg₃Si₃O₆₈:Dy³⁺, Eu³⁺ have not been yet investigated up to now.

In this work, we first reported a novel single phase $Ca_{20}Al_{26}Mg_3Si_3O_{68}:Dy^{3+}$, Eu^{3+} phosphor prepared through a simple high temperature solid state method. The crystal structure, luminescence properties, energy transfer and color tunable luminescence of the phosphors were studied. The energy transfer from Dy^{3+} to Eu^{3+} in $Ca_{20}Al_{26}Mg_3Si_3O_{68}$ (following for short as CAMSO) system were investigated in detail and the mechanisms are also discussed for the energy transfer behavior. Finally, the results indicate that this phosphor can be effectively excited by UV (about 344nm)

light and emit visible light from yellow to orange red by altering the concentration ratio of Dy³⁺ and Eu³⁺, and it may have potential applications in white LEDs as a promising single-phase color-tunable phosphor.

2. EXPERIMENTAL

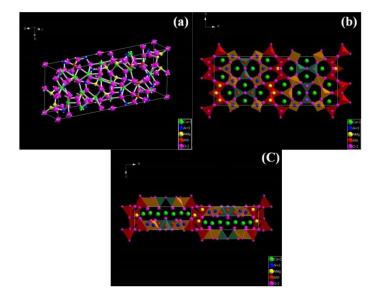
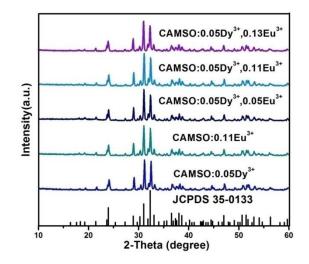
A series of single-phased CAMSO: Dy^{3+} , Eu^{3+} phosphors were synthesized by high temperature solid-state reaction. The raw materials CaCO₃ (A.R.), Al_2O_3 (A.R.), MgO (A.R.), SiO₂ (A.R.) were obtained from the Beijing Chemical Reagent Research Institute of China and spectrographically pure Dy_2O_3 (99.95%), Eu_2O_3 (99.99%) were supplied by Shanghai Yuelong Non-Ferrous Metals Limited of China. These raw reactants were quantified based on the stoichiometric molar ratio and then mixed in an agate mortar by grinding. The powder after mixing was placed in a small corundum crucible and sintered in a tubular furnace at 1380 °C for 2 h in air atmosphere, and slowly cooled down to room temperature.

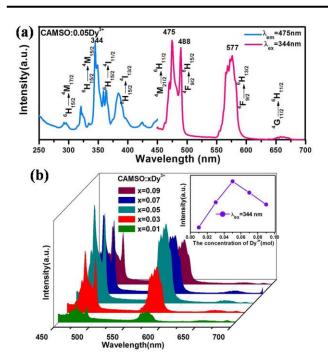
The powder X-ray diffraction patterns (XRD) were recorded by powder X-ray diffractometer (RigakuD/Max-BII), using Cu K α radiation. The excitation and emission spectra were recorded by a Jobin Yvon FluoroMax-4 equipped with a 150W xenon lamp as the excitation source. All the experiments were performed at room temperature.

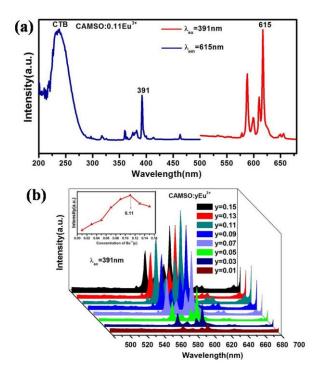
3. RESULTS AND DISCUSSION

The crystal structure of CAMSO belongs to a orthorhombic space group with a relatively large unit cell, and the lattice parameters are a=27.64 Å, b=10.802 Å, c=5.124 Å and V=1529.9 Å³, respectively. Figure 1 represents the crystal structure and cation polyhedral arrangements of CAMSO. The structure contains twelve AlO₄, twelve (Mg,Al)O₄ and eight (Al,Si)O₄ tetrahedra with mean M-O (M=Mg/Al, Si/Al, or Al) distances of 1.76, 1.79 and 1.71 Å, respectively. AlO₄ and (Al,Si)O₄ tetrahedra are linked through corners to form a network of five-membered rings, similar to those found in gehlenite and 5CaO.3Al₂O₃. These differ in the propagation of the fivemembered rings of MO₄ tetrahedra. While in Ca₂₀Al₂₆Mg₃Si₃O₆₈, MO₄ tetrahedra are connected into infinite strips of five-membered rings in the b direction separated by chains of (Mg,Al)O₄ tetrahedra, the fivemembered rings in the last two compounds extend into infinite networks. Twelve Ca²⁺ ions in Ca₂₀Al₂₆Mg₃Si₃O₆₈ are coordinated by eight O²⁻, and eight Ca²⁺ by six O²⁻ anions [21].

In order to identify the composition and phase purity of as-prepared products, XRD measurements were carried out. Figure 2 shows the XRD patterns of CAMSO:Dy3+, Eu3+ phosphors with different Dy3+ and Eu3+ concentrations as well as the standard diffraction lines of Ca20Al26Mg3Si3O68 (JCPDS no.350133). It can be seen that all the diffraction peaks of these samples correspond to the JCPDS standard pattern (JCPDS no.350133) and no other phases or impurities appear. This implies that the pure phase powder was obtained and the Dy3+ and Eu3+ ions can be dissolved into this host without producing any other phase. The approximate ionic radii of Dy³⁺ (0.0908 nm) and Eu³⁺ (0.0950 nm) are all similar to that of Ca2+ (0.100 nm) so the Dy3+ and Eu3+ ions preferably occupies the Ca2+ ions rather than Mg2+ (0.072 nm) [22]. Some small shifts in the diffraction patterns relative to the standard diffraction pattern of JCPDS no. 35-0133 can be ascribed to the differences of ionic radius between Ca^{2+} and Dy^{3+} as well as Eu^{3+} . When the larger Ca^{2+} (0.100 nm) ions were substituted by the smaller Dy3+ (0.0908 nm) ions in the phosphor, the diffraction peaks are slightly shifted to a higher degree, in accordance to the Bragg equation: $\lambda = 2d\sin\theta$ [23].


Figure 1: Crystal structure and cation polyhedral arrangements of CAMSO host


The photoluminescence excitation and emission spectra of CAMSO:5%Dy³⁺ sample are displayed in Figure 3a. The excitation spectrum monitored with 475 nm emission (${}^{4}M_{21/2} \rightarrow {}^{6}H_{11/2}$) is made up of a sharp excitation band at 344 nm (the strongest peak) and several other bands centered at 294, 320, 364 and 384 nm, which are corresponding to the transitions of Dy³⁺ from the ground state ${}^{6}H_{15/2}$ to the excited state ${}^{4}M_{15/2}$, ${}^{4}D_{7/2}$, ${}^{4}M_{17/2}$, ${}^{4}I_{11/2}$, ${}^{4}I_{13/2}$, respectively. These excitation peaks indicate that the phosphor can forcefully absorb ultraviolet and blue light to obtain Dy³⁺ emission. Under the excitation of 344 nm, the emission spectrum of CAMSO:5%Dy³⁺ covering the region from 450 nm to 700 nm contains two dominating emission bands, whose peaks are at 475 (blue) and 577 nm (yellow), attributing to the Dy³⁺ transitions of the magnetic dipole (${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$) and electric dipole transitions (${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$), respectively [24].

It can be seen that the emission at 475 nm lines is more intense than that at 577 nm lines, namely, the intensity of blue emission is greater than that of yellow emission. It is well known that the hypersensitive transition is strongly influenced by the outside environment surrounding Dy^{3+} , and the magnetic dipole transition is insensitive to the crystal field around the Dy^{3+} ions. When Dy^{3+} is located at a low symmetry site (without inversion symmetry), the yellow emission is dominant in the emission spectrum; when Dy^{3+} is at a high symmetry site (with inversion symmetry), the blue emission is stronger than the yellow emission [25]. The stronger blue emission suggests that the site of Dy^{3+} ions has low symmetry, and this also can be confirmed by the crystal structure of $Ca_{20}Al_{26}Mg_3Si_3O_{68}$ in Figure 1.

Figure 3: (a) The excitation and emission spectra of CAMSO:0.05Dy³⁺ sample (b) the emission spectra of CAMSO: xDy³⁺ (x=0.01-0.09) samples, the inset exhibits the intensity of Dy³⁺ ion with different Dy³⁺ concentrations

Figure 3b illustrates the PL spectra of a series of CAMSO:x%Dy³⁺ with different Dy³⁺ concentrations under 344 nm excitation. It can be obviously observed that all emission bands show similar profiles with different relative intensities. Firstly, with the increasing of Dy³⁺ doping content, the emission intensity of the samples increases continuously, the best luminous concentration was at x=5%, then decreases further when the doping content of Dy³⁺ ions exceeds 5 mol% due to the concentration quenching effect. Therefore, the optimum concentration of Dy³⁺ was determined to be 5 mol%. The energy migration among the activator ions at high concentration triggers the concentration quenching. In this process, the loss of energy increases at a killer or quenching site, so the emission intensity decreases [26].

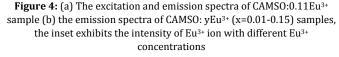


Figure 4a gives the excitation and emission spectra of CAMSO:11%Eu3+ samples. From the figure, it can be found that the excitation spectrum monitored at 615 nm consists of a broad band from 200 to 300 nm and a sharp line with a maximum at 391 nm. The broad band is attributed to the charge transfer (CT) band of Eu3+-O2- and host and it may include the CT excitation of Eu3+ ions and the energy transfer transition from matrix to Eu³⁺ ions. More in-depth, the CT band is due to the transition of electron from the filled 2p levels of oxygen to the 4f orbital of Eu³⁺. The narrow excitation peak at 391 nm is corresponding to the ${}^{7}F_{0} \rightarrow {}^{5}L_{6}$ transition of Eu³⁺. When excited at 391 nm, the emission spectrum covering the region from 500 to 700 nm is obtained. In the spectrum, there are several emission bands at 576, 587, 615 and 653 nm which correspond to the characteristic f-f transitions of Eu³⁺, in detail, ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$, ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$, ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{3}$ respectively [27]. It is clearly observed that the strong emission ascribed to the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ electric dipole transition (615 nm) becomes strongest among all these peaks, indicating that the sites of Eu³⁺ ions is lack of inversion symmetry. Thereby, the red emission is often dominant in the emission spectrum and the phosphor CAMSO:11%Eu3+ shows a bright red light under UV irradiation. The emission spectra of CAMSO: y%Eu³⁺ with different concentrations of Eu³⁺ are shown in Figure 4b. The explanation of the concentration quenching of Eu³⁺ ions is similar to Dy3+, please refer to Fig. 4b. The optimal doping contents of Eu3+ is determined to be 11%.

In order to further study the tunable color luminescence and energy transfer in Dy³⁺, Eu³⁺ co-doped CAMSO host, the concentration of Dy³⁺ ions is fixed for 5 mol%, a optimized concentration which is chosen based on the results of the PL intensity of Dy3+-doped phosphors, a series of CAMSO:5%Dy³⁺, y%Eu³⁺ (y=0, 0.01-0.15) samples have been prepared and their PL spectra are compared in Figure 5a. It can be seen that the emission spectra under the excitation of 344 nm contain the characteristic emissions for both Dy3+ and Eu3+ ions. As shown in Figure 5a and b, with the increasing of Eu3+ contents, the emission intensity of Dy3+ ions decrease while the emission intensity of Eu3+ ions increase, which implies that the Eu³⁺ ions emission is sensitized by Dy³⁺ ions through the energy transfer. When the Eu³⁺ concentration is beyond 11 mol%, the intensity of the Eu3+ emission begins to decrease due to the self-quenching effect which are the interactions between Eu3+ ions. The above results demonstrate that tunable color can be realized by adjusting the concentration of Eu³⁺ and the energy transfer from Dy³⁺ to Eu³⁺ exists in the CAMSO host.

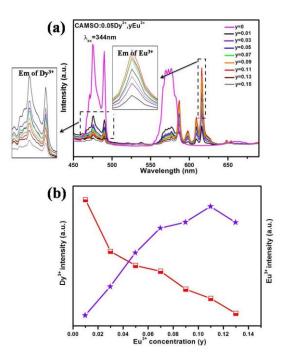


Figure 5: (a) Photoluminescence emission spectra of the CAMSO:0.05Dy³⁺,yEu³⁺ (y=0.01-0.13) samples with different Eu³⁺ doped concentrations (b) dependence of emission intensity on the Eu³⁺ concentration

Cite The Article: Bo Yuan, Yanhua Song, Weidong Wang, Haifeng Zou, Li Kong, Chuanbo Dai (2018). A New Single-Component Ca20al26mg3si3o68:Dy3+, Eu3+ Potential Phosphor For White-Light Emitting Diodes: Luminescence Properties, Energy Transfer And Multicolor Luminescence. *Topics in Chemical & Material Engineering*, 1(1): 16-20.

The CIE 1931 chromaticity coordinates diagram for CAMS0:5%Dy³⁺, y%Eu³⁺ phosphors measured at 344 nm is depicted in Figure 6. It can be seen that with the increasing Eu³⁺ concentration, the chromaticity coordinates value (x, y) vary systematically from (0.388, 0.422) to (0.511, 0.267) because of the different emission components of the Dy³⁺ and Eu³⁺ ascribed to the energy transfer from Dy³⁺ to Eu³⁺. In addition, the corresponding color tone of the samples can change from yellow to orange red light by appropriately adjusting the relative content proportion of Dy³⁺ and Eu³⁺. The phosphors can realize multicolor emission from yellow to orange red light under the excitation with an UV wavelength of 344 nm, which is accessible to UV LEDs. The above results indicate that the CAMSO: Dy³⁺, Eu³⁺ phosphor has potential application value in pc-white LEDs.

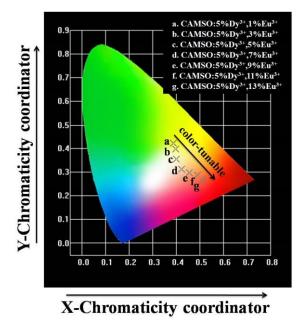


Figure 6: CIE chromaticity diagram of the selected CAMSO:0.05Dy³⁺,yEu³⁺ phosphors under the UV excitation

4. CONCLUSIONS

In general, a series of Dy³⁺ and Eu³⁺ co-doped CAMSO phosphors have been synthesized by solid state reaction and the crystal structure, luminescent property, energy transfer and multicolor emission behavior were investigated in detail. The XRD analyses indicate that Dy³⁺ and Eu³⁺ are totally incorporated into the CAMSO host lattice. The energy transfer process of Dy³⁺→Eu³⁺ has been confirmed in the CAMSO host by the excitation and emission spectra. In addition, the emission color can be tuned from yellow to orange red by adjusting appropriate concentration of Dy³⁺ and Eu³⁺ ions the above results indicate that the single-component phosphors exhibiting color-tunable emissions may have potential application value in pc-white LEDs.

ACKNOWLEDGMENTS

This present work is financially supported by the Major Program for the Field, Jilin Chemical Engineering University.

REFERENCE

[1] Chengaiah, T., Jayasankar, C.K., Babu, A.M., Moorthy, L.R. 2014. Eu³⁺- Dy³⁺ co-doped Na₃Gd(PO₄)₂ phosphors for white light luminescence. Mater. Express, 4, 153-158. doi: 10.1166/mex.2014.1149

[2] Yin, W.Y., Zhou, L.J., Gu, Z.J., Tian, G., Jin, S., Yan, L., Liu, X.X., Xing, G., Ren, W. 2012. Lanthanide-doped GdVO₄ up conversion nanophosphors with tunable emissions and their applications for biomedical imaging. Journal of Materials Chemistry C, 22, 6974-6981. doi: 10.1039/C2JM16152D

[3] Wang, X.F., Yang, Q., Wang, G.G., Wang, X.Z. 2016. A new singlecomponent KCaY(PO4)₂:Dy³⁺,Eu³⁺ nanosized phosphor with high colorrendering index and excellent thermal resistance for warm-white NUV-LED. RSC. Adv, 6, 96263-96274. doi: 10.1039/C6RA20912B [4] Babu, B.H., Kumar, R.K.V.V. 2014. Photoluminescence properties and energy transfer in γ -irradiated Dy³⁺, Eu³⁺-codoped fluoroaluminoborate glasses. Journal of Materials Science, 49, 7959-7969. doi: 10.1007/s1085

[5] Xie, R.J., Hirosaki, N., Mitomo, M., Takahashi, K., Sakuma, K. 2006. Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors. Applied Physics Letters, 88, 101-104. doi: 10.1063/1.2182067

[6] Tang, W.J., Zhang, F. 2014. A single-phase emission-tunable $Ca_5(PO_4)_3$ F:Eu²⁺,Mn²⁺ phosphor with efficient energy transfer for white LEDs. European Journal of Inorganic Chemistry, 3387-3392. doi: 10.1002/ejic.201402187

[7] Zhang, F., Tang, W.J. 2015. Synthesis and luminescence properties of Ca_8NaGd (PO_4) $_6F_2$: Eu^{2+} , Mn^{2+} for white LEDs. Optical Materials, 627, 218-221. doi: 10.1016/j.optmat.2014.07.022

[8] Xuan, Y., Wang, X.F., Liu, C.S., Yan, X.H. 2014. Structure and Luminescence Properties of Single-Phased $BaCa_2Y_6O_{12}$: Eu³⁺, Dy³⁺. Journal of Solid State Science and Technology, 3, R216-R211. doi: 10.1149/2.0011412jss

[9] Dutta, S., Sharma, S.K. 2016. Energy transfer between $Dy^{3\ast}$ and $Eu^{3\ast}$ in $Dy^{3\ast}/Eu^{3\ast}$ -codoped Gd_2MoO_6 . Journal of Materials Science, 51, 6750-6760. doi: 10.1007/s1085

[10] Song, Y., Shao, B.Q., Feng, Y., Lv, W., Liu, G.X., You, H.P. 2016. A novel strategy to enhance the luminescence performance of NaGdF₄:Ln³⁺ nanocrystals. Dalton. Trans, 45, 9468-9476. doi: 10.1039/c6dt01206j

[11] Pavitra, E., Seeta Rama Raju, G., Yu, J.S. 2013. White light emission from Eu³⁺ co-activated Ca₂Gd₈Si₆O₂₆:Dy³⁺ nanophosphors by solvothermal synthesis. Ceramics International, 39, 6319-6324. doi: 10.1016/j.ceramint.2013.01.057

[12] Zhou, Y., Xu, J.Y., Zhang, Z.J., You, M.J. 2014. The spectroscopic properties of Dy³⁺ and Eu³⁺ co-doped ZnWO₄ phosphors. Journal of Alloys and Compounds, 615, 624-628. doi: 10.1016/j.jallcom.2014.07.075

[13] Kim, J.S., Jeon, P.E., Choi, J.C., Park, H.L., Mho, S.J., Kim, G.C. 2004. Warm- white-light emitting diode utilizing a single-phase full-color $Ba_3MgSi_2O_8:Eu^{2+},Mn^{2+}$ phosphor. Applied Physics Letters, 84, 231909-231909-3. doi: 10.1063/1.1695441

[14] Zhang, Z., Mao, Z. Song, S., Zhang, J., Liu, L. Zhang, W., Wang, D. 2013. Preparation and investigation of $(Sr_{0.85}Mg_{0.14})_3(P_{1-x}Si_xO_4)_2$: Dy³⁺ single-phase full-color phosphor. Materials Letters, 90, 1-3. doi: 10.1016/j.matlet.2012.08.144

[15] Kang, F.W., Yang, X.B., Peng, M.Y., Wondraczek, L., Ma, Z.J., Zhang, Q.Y., Qiu, J.R. 2014. Red Photoluminescence from Bi³⁺ and the Influence of the Oxygen-Vacancy Perturbation in ScVO₄: A Combined Experimental and Theoretical Study. The Journal of Physical Chemistry C, 118, 7515-7522. doi: 10.1021/jp4081965

[16] Blasse, G. 1966. On the Eu³⁺ Fluorescence of Mixed Metal Oxides. IV. The Photoluminescent Efficiency of Eu³⁺-Activated Oxides. The Journal of Chemical Physics, 45, 2356-2360. doi: 10.1063/1.1727946

[17] Deng, Y.M., Yi, S.P., Huang, J., Xian, J.Q., Zhao, W.R. 2014. White light emission and energy transfer in Dy^{3+}/Eu^{3+} co-doped $BaLa_2WO_7$ phosphors. Materials Research Bulletin, 57, 85-90. doi: 10.1016/j.materresbull.2014.05.035

[18] Il Jeon, Y., Krishna Bharat, L., Yu, J.S. 2015. Synthesis and luminescence properties of Eu^{3+}/Dy^{3+} ions co-doped $Ca_2La_8(GeO_4)_6O_2$ phosphors for white-light applications. Journal of Alloys and Compounds, 620, 263-268. doi: 10.1016/j.jallcom.2014.09.135

[19] Guo, C., Luan, L., Huang, D., Su, Q., Lv, Y. 2007. Study on the stability of phosphor SrAl₂O₄:Eu²⁺,Dy³⁺ in water and method to improve its moisture resistance. Materials Chemistry and Physics, 106, 268-272. doi: 10.1016/j.matchemphys.2007.05.052

[20] Parchur, A.K., Prasad, A.I., Rai, S.B., Ningthoujam, R.S. 2012. Improvement of blue, white and NIR emissions in YPO_4 : Dy^{3+} nanoparticles on co-doping of Li⁺ ions. Dalton Trans, 41, 13810. doi: 10.1039/c2dt32062b

[21] Yuan, B., Song, Y.H., Sheng, Y., Zheng, K., Zhou, X., Ma, P.C., Xu, X., Zou, H.F. 2015. Tunable color and energy transfer in single-phase white-

emitting $Ca_{20}Al_{26}Mg_3Si_3O_{68};Ce^{3*},Dy^{3*}$ phosphors for UV white light-emitting diodes. Journal of Solid State Chemistry, 232, 169-177. doi: 10.1016/j.jssc.2015.09.015

[22] Liu, Y., Liu, G., Dong, X., Wang, J., Yu, W. 2015. Tunable photoluminescence and magnetic properties of Dy^{3+} and Eu^{3+} doped GdVO₄ multifunctional phosphors. Physical Chemistry Chemical Physics, 17, 26638-26644. doi: 10.1039/c5cp04373e

[23] Li, K., Fan, J., Mi, X.Y., Zhang, Y., Lian, H.Z., Shang, M.M., Lin, J. 2014. Tunable-color luminescence via energy transfer in NaCa_{13/18}Mg_{5/18}PO₄: A (A=Eu²⁺/Tb³⁺/Mn²⁺, Dy³⁺) phosphors for solid state lighting. Inorganic Chemistry, 53, 12141-12150. doi: 10.1021/ic502058r

[24] Gai, S., Li, C., Yang P., Lin, J. 2014. Recent Progress in Rare Earth Micro/Nanocrystals: Soft Chemical Synthesis, Luminescent Properties, and Biomedical Applications. Chemical Reviews, 114, 2343-2389. doi: 10.1021/es803431c

[25] Puppalwar, S.P., Dhoble, S.J. 2015. Photoluminescence properties of LiBaPO₄:M³⁺ phosphor for near-UV light-emitting diode (M = Eu and Dy). Luminescence, 30, 745-750. doi: 10.1002/bio.2815

[26] Chan, T.S., Lin, C.C., Liu, R.S., Xie, R.J., Hirosaki, N., Cheng, B.M. 2009. Photoluminescent and thermal stable properties of Tb³⁺-doped Ca-alpha-SiAlON under VUV excitation. Journal of The Electrochemical Society, 156, J189-J191. doi: 10.1149/1.3125135

[27] Min, X., Huang, Z., Fang, M., Liu, Y.G., Tang C., Wu, X. 2014. Energy Transfer from Sm³⁺ to Eu³⁺ in Red-Emitting Phosphor LaMgAl₁₁O₁₉:Sm³⁺, Eu³⁺ for Solar Cells and Near-Ultraviolet White Light-Emitting Diodes. Inorganic Chemistry, 53, 6060–6065. doi: 10.1021/ic500412r.